The
The full set of Lithic polychora is enormous, and finding all of them by myself would take way too much effort that I'm willing to put into this project. This page will for now only concern itself with the amalgamation of two exceptional Lithic polyhedra.
The list might not be complete, seeing as the largest known has a symmetry order in the hundreds of millions, while the code can only reach an order in the few millions before giving up. The GAP code used to make the list can be found here, by running the function
Schläfli symbol | Symmetry order | C | F | E | V | Polytope Wiki | Atlas |
---|---|---|---|---|---|---|---|
{4,3,4:3,3}3 | 96 | 4 | 6 | 6 | 4 | {4,3}*96 | |
{3,3,3:4,4}5 | 120 | 5 | 10 | 10 | 5 | pentachoron | {3,3}*120 |
{4,3,4:6,3}6 | 192 | 4 | 12 | 12 | 8 | ❴❴4,3❵,❴3,4:3❵❵ | {4,3}*192b |
{4,3,4:3,6}6 | 192 | 8 | 12 | 12 | 4 | {4,3}*192a | |
{4,6,4:3,3}6 | 192 | 4 | 12 | 12 | 4 | {4,6}*192g | |
{6,3,3:4,4}10 | 240 | 5 | 10 | 20 | 10 | kappa pentachoron | {6,3}*240 |
{3,3,6:4,4}10 | 240 | 10 | 20 | 10 | 5 | {3,3}*240 | |
{3,6,3:4,4}5 | 240 | 5 | 20 | 20 | 5 | {3,6}*240 | |
{4,3,3:6,4}8 | 384 | 8 | 24 | 32 | 16 | tesseract | {4,3}*384 |
{3,3,4:4,6}8 | 384 | 16 | 32 | 24 | 8 | hexadecachoron | {3,3}*384 |
{6,3,6:4,4}10 | 480 | 10 | 20 | 20 | 10 | {6,3}*480 | |
{3,5,3:5,5}6 | 660 | 11 | 55 | 55 | 11 | 11-cell | {3,5}*660 |
{4,3,6:6,4}8 | 768 | 16 | 48 | 32 | 16 | {4,3}*768 | |
{6,3,4:4,6}8 | 768 | 16 | 32 | 48 | 16 | {6,3}*768 | |
{4,5,3:5,5}5 | 960 | 6 | 60 | 80 | 16 | {4,5}*960 | |
{3,5,4:5,5}5 | 960 | 16 | 80 | 60 | 6 | {3,5}*960 | |
{3,4,3:6,6}12 | 1152 | 24 | 96 | 96 | 24 | icositetrachoron | {3,4}*1152 |
{4,6,3:5,4}6 | 1440 | 6 | 90 | 120 | 30 | {4,6}*1440c | |
{3,6,4:4,5}6 | 1440 | 30 | 120 | 90 | 6 | {3,6}*1440c | |
{5,3,5:5,5}9 | 3420 | 57 | 171 | 171 | 57 | 57-cell | |
{4,3,5:6,5}10 | 3840 | 80 | 240 | 192 | 64 | ||
{4,5,3:6,5}6 | 3840 | 16 | 240 | 320 | 64 | ||
{3,4,6:6,5}8 | 3840 | 80 | 320 | 160 | 16 | ||
{6,4,3:5,6}8 | 3840 | 16 | 160 | 320 | 80 | ||
{5,3,4:5,6}10 | 3840 | 64 | 192 | 240 | 80 | ||
{3,5,4:5,6}6 | 3840 | 64 | 320 | 240 | 16 | ||
{4,3,10:6,5}10 | 7680 | 160 | 480 | 192 | 64 | ||
{10,3,4:5,6}10 | 7680 | 64 | 192 | 480 | 160 | ||
{3,5,5:10,4}17 | 8160 | 68 | 680 | 408 | 51 | ||
{5,5,5:4,4}15 | 8160 | 51 | 408 | 408 | 51 | ||
{5,5,3:4,10}17 | 8160 | 51 | 408 | 680 | 68 | ||
{5,3,3:10,4}30 | 14400 | 120 | 720 | 1200 | 600 | hecatonicosachoron | |
{3,3,5:4,10}30 | 14400 | 600 | 1200 | 720 | 120 | hexacosichoron | |
{5,3,6:10,4}30 | 28800 | 240 | 1440 | 1200 | 600 | ||
{3,5,6:10,4}24 | 28800 | 240 | 2400 | 1200 | 120 | ||
{6,3,5:4,10}30 | 28800 | 600 | 1200 | 1440 | 240 | ||
{6,5,3:4,10}24 | 28800 | 120 | 1200 | 2400 | 240 | ||
{5,6,5:4,4}13 | 31200 | 130 | 1560 | 1560 | 130 | ||
{4,5,6:6,4}12 | 57600 | 240 | 3600 | 2400 | 240 | ||
{6,5,4:4,6}12 | 57600 | 240 | 2400 | 3600 | 240 | ||
{3,5,4:10,5}10 | 61440 | 512 | 5120 | 3840 | 384 | ||
{4,5,3:5,10}10 | 61440 | 384 | 3840 | 5120 | 512 | ||
{5,4,3:6,6}39 | 93600 | 390 | 4680 | 7800 | 1950 | 390-cell | |
{3,4,5:6,6}39 | 93600 | 1950 | 7800 | 4680 | 390 | 1950-cell | |
{7,3,3:8,4}25 | 117600 | 350 | 4200 | 9800 | 4900 | 350-cell | |
{3,3,7:4,8}25 | 117600 | 4900 | 9800 | 4200 | 350 | 4900-cell | |
{4,5,6:5,4}8 | 122880 | 768 | 7680 | 5120 | 512 | ||
{6,5,4:4,5}8 | 122880 | 512 | 5120 | 7680 | 768 | ||
{7,3,6:8,4}50 | 235200 | 700 | 8400 | 9800 | 4900 | ||
{6,3,7:4,8}50 | 235200 | 4900 | 9800 | 8400 | 700 | ||
{5,3,5:10,5}? | 600415200 | 5003460 | 30020760 | 30020760 | 10006920 | 5003460-cell | |
{5,3,5:5,10}? | 600415200 | 10006920 | 30020760 | 30020760 | 5003460 | 10006920-cell |