Home
Places
Index
Miscellaneous

Lithic polychora

The Lithic polychora are the Lithic polytopes of rank 4. They are of the form {p,q,r:a,b}c, or in more mathematical notation, they can be made by taking a base rank 4 Schläfli type ρ and applying Petrial polygon relations: ρ=ρ/(ρ1ρ2ρ3)a,(ρ1ρ2ρ3)b,(ρ1ρ2ρ3ρ4)cρ. Alternatively, they may be derived as the amalgamation of two Lithic polyhedra with a final Petrie polygon relation applied over the whole polychoron.

The full set of Lithic polychora is enormous, and finding all of them by myself would take way too much effort that I'm willing to put into this project. This page will for now only concern itself with the amalgamation of two exceptional Lithic polyhedra.

List

The list might not be complete, seeing as the largest known has a symmetry order in the hundreds of millions, while the code can only reach an order in the few millions before giving up. The GAP code used to make the list can be found here, by running the function RunLithics().

Schläfli symbol Symmetry order C F E V Polytope Wiki Atlas
{4,3,4:3,3}3 96 4 6 6 4 {4,3}*96
{3,3,3:4,4}5 120 5 10 10 5 pentachoron {3,3}*120
{4,3,4:6,3}6 192 4 12 12 8 ❴❴4,3❵,❴3,4:3❵❵ {4,3}*192b
{4,3,4:3,6}6 192 8 12 12 4 {4,3}*192a
{4,6,4:3,3}6 192 4 12 12 4 {4,6}*192g
{6,3,3:4,4}10 240 5 10 20 10 kappa pentachoron {6,3}*240
{3,3,6:4,4}10 240 10 20 10 5 {3,3}*240
{3,6,3:4,4}5 240 5 20 20 5 {3,6}*240
{4,3,3:6,4}8 384 8 24 32 16 tesseract {4,3}*384
{3,3,4:4,6}8 384 16 32 24 8 hexadecachoron {3,3}*384
{6,3,6:4,4}10 480 10 20 20 10 {6,3}*480
{3,5,3:5,5}6 660 11 55 55 11 11-cell {3,5}*660
{4,3,6:6,4}8 768 16 48 32 16 {4,3}*768
{6,3,4:4,6}8 768 16 32 48 16 {6,3}*768
{4,5,3:5,5}5 960 6 60 80 16 {4,5}*960
{3,5,4:5,5}5 960 16 80 60 6 {3,5}*960
{3,4,3:6,6}12 1152 24 96 96 24 icositetrachoron {3,4}*1152
{4,6,3:5,4}6 1440 6 90 120 30 {4,6}*1440c
{3,6,4:4,5}6 1440 30 120 90 6 {3,6}*1440c
{5,3,5:5,5}9 3420 57 171 171 57 57-cell
{4,3,5:6,5}10 3840 80 240 192 64
{4,5,3:6,5}6 3840 16 240 320 64
{3,4,6:6,5}8 3840 80 320 160 16
{6,4,3:5,6}8 3840 16 160 320 80
{5,3,4:5,6}10 3840 64 192 240 80
{3,5,4:5,6}6 3840 64 320 240 16
{4,3,10:6,5}10 7680 160 480 192 64
{10,3,4:5,6}10 7680 64 192 480 160
{3,5,5:10,4}17 8160 68 680 408 51
{5,5,5:4,4}15 8160 51 408 408 51
{5,5,3:4,10}17 8160 51 408 680 68
{5,3,3:10,4}30 14400 120 720 1200 600 hecatonicosachoron
{3,3,5:4,10}30 14400 600 1200 720 120 hexacosichoron
{5,3,6:10,4}30 28800 240 1440 1200 600
{3,5,6:10,4}24 28800 240 2400 1200 120
{6,3,5:4,10}30 28800 600 1200 1440 240
{6,5,3:4,10}24 28800 120 1200 2400 240
{5,6,5:4,4}13 31200 130 1560 1560 130
{4,5,6:6,4}12 57600 240 3600 2400 240
{6,5,4:4,6}12 57600 240 2400 3600 240
{3,5,4:10,5}10 61440 512 5120 3840 384
{4,5,3:5,10}10 61440 384 3840 5120 512
{5,4,3:6,6}39 93600 390 4680 7800 1950 390-cell
{3,4,5:6,6}39 93600 1950 7800 4680 390 1950-cell
{7,3,3:8,4}25 117600 350 4200 9800 4900 350-cell
{3,3,7:4,8}25 117600 4900 9800 4200 350 4900-cell
{4,5,6:5,4}8 122880 768 7680 5120 512
{6,5,4:4,5}8 122880 512 5120 7680 768
{7,3,6:8,4}50 235200 700 8400 9800 4900
{6,3,7:4,8}50 235200 4900 9800 8400 700
{5,3,5:10,5}? 600415200 5003460 30020760 30020760 10006920 5003460-cell
{5,3,5:5,10}? 600415200 10006920 30020760 30020760 5003460 10006920-cell