Home
Places
Index
Miscellaneous

Lithic polyhedra

The Lithic polyhedra are the the Lithic polytopes of rank 3. They must be of the form {p,q}a, or in more mathematical notation, they can be made by taking a base rank 3 Schläfli type ρ and applying a Petrial polygon relation: ρ=ρ/(ρ1ρ2ρ3)aρ. In total, there are 112 known Lithic polyhedra with two infinite families. Any additional Lithic polyhedra would likely have a symmetry order of at least several million.

The Lithic polyhedra in their totality are called the Greater Lithic polyhedra, which includes the two infinite families. The subset of these that exclude the two infinite families are the Smaller or exceptional Lithic polyhedra.

The exceptional Lithic polyhedra can be divided into 22 families. Each family has a base polyhedron, {p,q}a, conventionally apq, from which the whole family can be generated by successive dualing and Petrialing (that is, all permutations of p, q, a). 16 families have six polyhedra, 5 have three and 1 has one (the {5,5}5 family).

List

The lists below were based on Plasmath's Finite abstract regular polyhedra of the form p,q:r.

Families

Tetrahedral family {3,3}4:: has symmetry order 24. It is named after the tetrahedron, its main member. Its components are 4 triangles and 3 squares.

Cubic family {4,3}6:: has order 48, being a double cover of the tetrahedral family. It is named after the cube, its main member. Its components are 8 triangles, 6 squares and 4 hexagons.

Hemidodecahedral family {5,3}5:: has order 60. It is named after the hemidodecahedron, its main member.. Its components are 10 triangles and 6 pentagons.

Dodecahedral family {5,3}10:: has order 120, being a double cover of the hemidodecahedral family. It is named after the dodecahedron, its main member. Its components are 20 triangles, 12 pentagons and 6 decagons.

{5,4}5 family: has order 160. Its components are 16 pentagons and 20 squares.

Dodecadodecahedral family {5,4}6:: has order 240. It is named after the dodecadodecahedron, its main member. Its components are 30 squares, 24 pentagons and 20 hexagons.

Kleinig family {3,7}8:: has order 336. It is named after the Klein map, its main member. Its components are 56 triangles, 24 heptagons and 21 octagons.

{3,7}9 family: has order 504. Its components are 84 triangles, 36 heptagons and 28 enneagons.

Triquinary family {5,5}5:: has order 660. It is named after the fact that it has three fives as its symbol. Its components are 66 pentagons. Only family with only one member.

{8,3}8 family: has order 672. Its components are 112 triangles and 42 octagons.

{3,7}13 family: has order 1092. Its components are 182 triangles, 78 heptagons and 42 tridecagons.

{4,5}8 family: has order 1440. Its components are 180 squares, 144 pentagons and 90 octagons.

{3,7}12 family: has order 2184. Its components are 364 triangles, 156 heptagons and 91 dodecagons.

{3,7}14 family: has order 2184. Its components are 364 triangles, 156 heptagons and 78 tetradecagons.

{9,3}9 family: has order 3420. Its components are 570 triangles and 190 enneagons.

{8,3}10 family: has order 4320. Its components are 720 triangles, 270 octagons and 216 decagons.

{6,4}7 family: has order 4368. Its components are 546 squares, 364 hexagons and 312 heptagons.

{5,4}9 family: has order 6840. Its components are 855 squares, 684 pentagons and 380 enneagons.

{8,3}11 family: has order 12144. Its components are 2024 triangles, 759 octagons and 552 hendecagons.

{7,3}15 family: has order 12180. Its components are 2030 triangles, 870 heptagons and 406 pentadecagons.

{9,3}10 family: has order 20520. Its components are 3420 triangles, 1140 enneagons and 1026 decagons.

{7,3}16 family: has order 21504, being a quattuorsexagecuple (64) cover of the Kleinig family. Its components are 3584 triangles, 1536 enneagons and 672 hexadecagons.

Infinite

Square toroidal family {4,4}2n: has order 16n2. Its components are 2n2 squares and 4n 2n-gons. All have orientable genus 1 (torus).

Trihexagonal toroidal family {6,3}2n: has order 12n2. Its components are 2n2 triangles, n2 hexagons and 3n 2n-gons. All have orientable genus 1 (torus).

Exceptional Lithic polyhedra

Schläfli symbol Symmetry order F E V Euler characteristic Systematic name Polytope Wiki Atlas
{3,3}4 24 4 6 4 2, g. 0o spherical tetrahedron tetrahedron {3,3}*24
{4,3}3 24 3 6 4 1, g. 1n projective trihedron hemicube {4,3}*24
{3,4}3 24 4 6 3 1, g. 1n projective tetrahedron hemioctahedron {3,4}*24
{4,3}6 48 6 12 8 2, g. 0o spherical hexahedron cube {4,3}*48
{3,4}6 48 8 12 6 2, g. 0o spherical octahedron octahedron {3,4}*48
{6,4}3 48 4 12 6 -2, g. 4n quadriprojective tetrahedron Petrial octahedron {6,4}*48
{4,6}3 48 6 12 4 -2, g. 4n quadriprojective hexahedron {4,6}*48
{3,6}4 48 8 12 4 0, g. 1o Heawood octahedron {3,6}*48
{6,3}4 48 4 12 8 0, g. 1o Heawood tetrahedron Petrial cube {6,3}*48
{5,3}5 60 6 15 10 1, g. 1n projective hexahedron hemidodecahedron {5,3}*60
{3,5}5 60 10 15 6 1, g. 1n projective decahedron hemiicosahedron {3,5}*60
{5,5}3 60 6 15 6 -3, g. 5n quinqueprojective hexahedron Petrial hemiicosahedron {5,5}*60
{5,3}10 120 12 30 20 2, g. 0o spherical dodecahedron dodecahedron {5,3}*120
{3,5}10 120 20 30 12 2, g. 0o spherical icosahedron icosahedron {3,5}*120
{10,3}5 120 6 30 20 -4, g. 6n sexaprojective hexahedron Petrial dodecahedron {10,3}*120b
{3,10}5 120 20 30 6 -4, g. 6n sexaprojective icosahedron {3,10}*120a
{10,5}3 120 6 30 12 -12, g. 14n quattuordecaprojective hexahedron Petrial icosahedron {10,5}*120
{5,10}3 120 12 30 6 -12, g. 14n quattuordecaprojective dodecahedron {5,10}*120a
{5,4}5 160 16 40 20 -4, g. 6n sexaprojective hexadecahedron {5,4}*160
{4,5}5 160 20 40 16 -4, g. 6n sexaprojective icosahedron {4,5}*160
{5,5}4 160 16 40 16 -8, g. 5o Sherk hexadecahedron {5,5}*160
{5,4}6 240 24 60 30 -6, g. 4o Bring icositetrahedron dodecadodecahedron {5,4}*240
{4,5}6 240 30 60 24 -6, g. 4o Bring triacontahedron medial rhombic triacontahedron {4,5}*240
{6,4}5 240 20 60 30 -10, g. 12n duodecaprojective icosahedron {6,4}*240c
{4,6}5 240 30 60 20 -10, g. 12n duodecaprojective triacontahedron {4,6}*240c
{6,5}4 240 20 60 24 -16, g. 9o noventoral icosahedron medial triambic icosahedron {6,5}*240a
{5,6}4 240 24 60 20 -16, g. 9o noventoral icositetrahedron ditrigonary dodecadodecahedron {5,6}*240a
{7,3}8 336 24 84 56 -4, g. 3o Klein icositetrahedron Klein map {7,3}*336
{3,7}8 336 56 84 24 -4, g. 3o Klein pentecontahexahedron dual Klein map {3,7}*336
{8,3}7 336 21 84 56 -7, g. 9n novemprojective icosihenahedron Petrial Klein map {8,3}*336b
{3,8}7 336 56 84 21 -7, g. 9n novemprojective pentecontahexahedron {3,8}*336a
{8,7}3 336 21 84 24 -39, g. 41n quadragintuniprojective icosihenahedron {8,7}*336a
{7,8}3 336 24 84 21 -39, g. 41n quadragintuniprojective icositetrahedron {7,8}*336b
{7,3}9 504 36 126 84 -6, g. 8n octoprojective triacontahexahedron {7,3}*504
{3,7}9 504 84 126 36 -6, g. 8n octoprojective ogdoëcontatetrahedron {3,7}*504
{9,3}7 504 28 126 84 -14, g. 16n sedecaprojective icosoctahedron {9,3}*504
{3,9}7 504 84 126 28 -14, g. 16n sedecaprojective ogdoëcontatetrahedron {3,9}*504
{9,7}3 504 28 126 36 -62, g. 64n sexagintaquadriprojective icosoctahedron {9,7}*504c
{7,9}3 504 36 126 28 -62, g. 64n sexagintaquadriprojective triacontahexahedron {7,9}*504a
{5,5}5 660 66 165 66 -33, g. 35n trigintaquinqueprojective hexecontahexahedron {5,5}*660
{8,3}8 672 42 168 112 -14, g. 8o octotoral tessaracontadihedron {8,3}*672a
{3,8}8 672 112 168 42 -14, g. 8o octotoral hecatondodecahedron {3,8}*672b
{8,8}3 672 42 168 42 -84, g. 86n octogintasexaprojective tessaracontadihedron {8,8}*672c
{7,3}13 1092 78 273 182 -13, g. 15n quindecaprojective hebdomecontoctahedron {7,3}*1092
{3,7}13 1092 182 273 78 -13, g. 15n quindecaprojective hecatonogdoëcontadihedron {3,7}*1092
{13,3}7 1092 42 273 182 -49, g. 51n quinquagintuniprojective tessaracontadihedron {13,3}*1092
{3,13}7 1092 182 273 42 -49, g. 51n quinquagintuniprojective hecatonogdoëcontadihedron {3,13}*1092
{13,7}3 1092 42 273 78 -153, g. 155n centiquinquagintaquinqueprojective tessaracontadihedron {13,7}*1092c
{7,13}3 1092 78 273 42 -153, g. 155n centiquinquagintaquinqueprojective hebdomecontoctahedron {7,13}*1092a
{5,4}8 1440 144 360 180 -36, g. 19o novendecatoral hecatontessaracontatetrahedron {5,4}*1440
{4,5}8 1440 180 360 144 -36, g. 19o novendecatoral hecatonogdoëcontahedron {4,5}*1440
{8,4}5 1440 90 360 180 -90, g. 92n nonagintaduoprojective enenecontahedron {8,4}*1440f
{4,8}5 1440 180 360 90 -90, g. 92n nonagintaduoprojective hecatonogdoëcontahedron {4,8}*1440f
{8,5}4 1440 90 360 144 -126, g. 64o sexagintaquadritoral enenecontahedron {8,5}*1440a
{5,8}4 1440 144 360 90 -126, g. 64o sexagintaquadritoral hecatontessaracontatetrahedron {5,8}*1440b
{7,3}12 2184 156 546 364 -26, g. 14o duodecapetrie quattuordecatoral hecatonpentecontahexahedron
{3,7}12 2184 364 546 156 -26, g. 14o duodecapetrie quattuordecatoral triacosihexecontatetrahedron
{12,3}7 2184 91 546 364 -91, g. 93n duodecapetrie nonagintatriprojective enenecontahenahedron
{3,12}7 2184 364 546 91 -91, g. 93n duodecapetrie nonagintatriprojective triacosihexecontatetrahedron
{12,7}3 2184 91 546 156 -299, g. 301n duodecapetrie trecentuniprojective enenecontahenahedron
{7,12}3 2184 156 546 91 -299, g. 301n duodecapetrie trecentuniprojective hecatonpentecontahexahedron
{7,3}14 2184 156 546 364 -26, g. 14o quattuordecapetrie quattuordecatoral hecatonpentecontahexahedron
{3,7}14 2184 364 546 156 -26, g. 14o quattuordecapetrie quattuordecatoral triacosihexecontatetrahedron
{14,3}7 2184 78 546 364 -104, g. 106n quattuordecapetrie centisexaprojective hebdomecontoctahedron
{3,14}7 2184 364 546 78 -104, g. 106n quattuordecapetrie centisexaprojective triacosihexecontatetrahedron
{14,7}3 2184 78 546 156 -312, g. 314n quattuordecapetrie trecentiquattuordecaprojective hebdomecontoctahedron
{7,14}3 2184 156 546 78 -312, g. 314n quattuordecapetrie trecentiquattuordecaprojective hecatonpentecontahexahedron
{9,3}9 3420 190 855 570 -95, g. 97n nonagintaseptemprojective hecatonenenecontahedron
{3,9}9 3420 570 855 190 -95, g. 97n nonagintaseptemprojective pentacosihebdomecontahedron
{9,9}3 3420 190 855 190 -475, g. 477n quadringentiseptuagintaseptemprojective hecatonenenecontahedron
{8,3}10 4320 270 1080 720 -90, g. 46o quadragintasexatoral diacosihebdomecontahedron
{3,8}10 4320 720 1080 270 -90, g. 46o quadragintasexatoral heptacosicosahedron
{10,3}8 4320 216 1080 720 -144, g. 73o septuagintatritoral diacosihexadecahedron
{3,10}8 4320 720 1080 216 -144, g. 73o septuagintatritoral heptacosicosahedron
{10,8}3 4320 216 1080 270 -594, g. 596n quingentinonagintasexaprojective diacosihexadecahedron
{8,10}3 4320 270 1080 216 -594, g. 596n quingentinonagintasexaprojective diacosihebdomecontahedron
{6,4}7 4368 364 1092 546 -182, g. 184n centoctogintaquadriprojective triacosihexecontatetrahedron
{4,6}7 4368 546 1092 364 -182, g. 184n centoctogintaquadriprojective pentacositessaracontahexahedron
{7,4}6 4368 312 1092 546 -234, g. 118o centoctodecatoral triacosidodecahedron
{4,7}6 4368 546 1092 312 -234, g. 118o centoctodecatoral pentacositessaracontahexahedron
{7,6}4 4368 312 1092 364 -416, g. 209o ducentinoventoral triacosidodecahedron
{6,7}4 4368 364 1092 312 -416, g. 209o ducentinoventoral triacosihexecontatetrahedron
{5,4}9 6840 684 1710 855 -171, g. 173n centiseptuagintatriprojective hexacosogdoëcontatetrahedron
{4,5}9 6840 855 1710 684 -171, g. 173n centiseptuagintatriprojective octacosipentecontapentahedron
{9,4}5 6840 380 1710 855 -475, g. 477n quadringentiseptuagintaseptemprojective triacosogdoëcontahedron
{4,9}5 6840 855 1710 380 -475, g. 477n quadringentiseptuagintaseptemprojective octacosipentecontapentahedron
{9,5}4 6840 380 1710 684 -646, g. 324o trecentivigintiquadritoral triacosogdoëcontahedron
{5,9}4 6840 684 1710 380 -646, g. 324o trecentivigintiquadritoral hexacosogdoëcontatetrahedron
{8,3}11 12144 759 3036 2024 -253, g. 255n ducentiquinquagintaquinqueprojective heptacosipentecontenneahedron
{3,8}11 12144 2024 3036 759 -253, g. 255n ducentiquinquagintaquinqueprojective dischiliicositetrahedron
{11,3}8 12144 552 3036 2024 -460, g. 231o ducentitrigintunitoral pentacosipentecontadihedron
{3,11}8 12144 2024 3036 552 -460, g. 231o ducentitrigintunitoral dischiliicositetrahedron
{11,8}3 12144 552 3036 759 -1725, g. 1727n milliseptingentivigintiseptemprojective pentacosipentecontadihedron
{8,11}3 12144 759 3036 552 -1725, g. 1727n milliseptingentivigintiseptemprojective heptacosipentecontenneahedron
{7,3}15 12180 870 3045 2030 -145, g. 147n centiquadragintaseptemprojective octacosihebdomecontahedron
{3,7}15 12180 2030 3045 870 -145, g. 147n centiquadragintaseptemprojective dischiliatriacontahedron
{15,3}7 12180 406 3045 2030 -609, g. 611n sescentundecaprojective tetracosihexahedron
{3,15}7 12180 2030 3045 406 -609, g. 611n sescentundecaprojective dischiliatriacontahedron
{15,7}3 12180 406 3045 870 -1769, g. 1771n milliseptingentiseptuagintuniprojective tetracosihexahedron
{7,15}3 12180 870 3045 406 -1769, g. 1771n milliseptingentiseptuagintuniprojective octacosihebdomecontahedron
{9,3}10 20520 1140 5130 3420 -570, g. 286o ducentoctogintasexatoral chiliahecatontessaracontahedron
{3,9}10 20520 3420 5130 1140 -570, g. 286o ducentoctogintasexatoral trischiliatetracosicosahedron
{10,3}9 20520 1026 5130 3420 -684, g. 686n sescentoctogintasexaprojective chiliicosihexahedron
{3,10}9 20520 3420 5130 1026 -684, g. 686n sescentoctogintasexaprojective trischiliatetracosicosahedron
{10,9}3 20520 1026 5130 1140 -2964, g. 2966n dumillinongentisexagintasexaprojective chiliicosihexahedron
{9,10}3 20520 1140 5130 1026 -2964, g. 2966n dumillinongentisexagintasexaprojective chiliahecatontessaracontahedron
{7,3}16 21504 1536 5376 3584 -256, g. 129o centivigintinoventoral chiliapentacositriacontahexahedron
{3,7}16 21504 3584 5376 1536 -256, g. 129o centivigintinoventoral trischiliapentacosogdoëcontatetrahedron
{16,3}7 21504 672 5376 3584 -1120, g. 1122n millicentivigintiduoprojective hexacosihebdomecontadihedron
{3,16}7 21504 3584 5376 672 -1120, g. 1122n millicentivigintiduoprojective trischiliapentacosogdoëcontatetrahedron
{16,7}3 21504 672 5376 1536 -3168, g. 3170n tremillicentiseptuagintaprojective hexacosihebdomecontadihedron
{7,16}3 21504 1536 5376 672 -3168, g. 3170n tremillicentiseptuagintaprojective chiliapentacositriacontahexahedron