Home
Places
Index
Miscellaneous

Codytized square tiling

Codytized square tiling

The codytized square tiling (codsquat) is an uncompact hyperbolic apeirocomb. It is the codytization of the square tiling.

Note: the ๐•ฑ polytopes are my naming. As far as I know, they do not have an official name besides their CD diagram.

Elements

Edges (1)

Dyad x

Faces (1)

Triangle x3o

Cells (2)

Tetrahedron x3o3o

Octahedron o3x3o

Tera (5)

Pentachoric symmetry (2)

Pentachoron x3o3o3o

Rectified pentachoron o3x3o3o

Demitesseractic symmetry (2)

Hexadecachoron x3o3o *b3o

Icositetrachoron o3x3o *b3o

Cyclotetrahedral honeycomb symmetry (1)

Tetrahedral-octahedral honeycomb x3o3o3o3*a

Peta (13)

Hexateric symmetry (3)

Hexateron x3o3o3o3o

Rectified hexateron o3x3o3o3o

Birectified hexateron o3o3x3o3o

Demipenteractic symmetry (4)

Demipenteract x3o3o3o *b3o

Penteractitriacontaditeron o3x3o3o *b3o

Rectified triacontaditeron o3o3x3o *b3o

Triacontaditeron o3o3o3x *b3o

Icositetrachoric tetracomb symmetry (2)

Hexadecachoric tetracomb x3o3o *b3o *b3o

Icositetrachoric tetracomb o3x3o *b3o *b3o

๐•ฑ symmetry (4)

▫ ๐•ฑยน x3o3o3o3o3*b

▫ ๐•ฑยฒ o3x3o3o3o3*b

▫ ๐•ฑยณ o3o3x3o3o3*b

▫ ๐•ฑโด o3o3o3x3o3*b

Exa (35)

Heptapetic symmetry (3)

Heptapeton x3o3o3o3o3o

Rectified heptapeton o3x3o3o3o3o

Birectified heptapeton o3o3x3o3o3o

Demihexeractic symmetry (5)

Demihexeract x3o3o3o3o *b3o

Birectified hexeract o3x3o3o3o *b3o

Birectified hexacontatetrapeton o3o3x3o3o *b3o

Rectified hexacontatetrapeton o3o3o3x3o *b3o

Hexacontatetrapeton o3o3o3o3x *b3o

Pentacontatetrapetic symmetry (4)

Icosiheptaheptacontadipeton x3o3o3o3o *c3o

Rectified icosiheptaheptacontadipeton o3x3o3o3o *c3o

Rectified pentacontatetrapeton o3o3x3o3o *c3o

Pentacontatetrapeton o3o3o3o3o *c3x

Triacontaditeric pentacomb symmetry (4)

Triacontaditeric pentacomb x3o3o3o *c3o *c3o

▫ Rectified pentacontaditeric pentacomb o3x3o3o *c3o *c3o

Birectified pentacontaditeric pentacomb o3o3x3o *c3o *c3o

1211 o3o3o3x *c3o *c3o

Demipenteractic pentacomb symmetry (2)

Demipenteractic pentacomb x3o3o3o *b3o *c3o

Birectified penteractic pentacomb o3x3o3o *b3o *c3o

๐•ฑโ‚ symmetry (5)

⁘ ๐•ฑโ‚ยน x3o3o3o3o3o3*c

⁘ ๐•ฑโ‚ยฒ o3x3o3o3o3o3*c

⁘ ๐•ฑโ‚ยณ o3o3x3o3o3o3*c

⁘ ๐•ฑโ‚โด o3o3o3x3o3o3*c

⁘ ๐•ฑโ‚โต o3o3o3o3x3o3*c

๐•ฑโ‚‚ symmetry (4)

⁘ ๐•ฑโ‚‚ยน x3o3o3o3o3*b3o

⁘ ๐•ฑโ‚‚ยฒ o3x3o3o3o3*b3o

⁘ ๐•ฑโ‚‚ยณ o3o3x3o3o3*b3o

⁘ ๐•ฑโ‚‚โด o3o3o3x3o3*b3o

๐•ฑโ‚ƒ symmetry (3)

⁘ ๐•ฑโ‚ƒยน x3o3o3o3o3o *b3*e

⁘ ๐•ฑโ‚ƒยฒ o3x3o3o3o3o *b3*e

⁘ ๐•ฑโ‚ƒยณ o3o3x3o3o3o *b3*e

๐•ฑโ‚† symmetry (3)

⁘ ๐•ฑโ‚†ยน x3o3o3o3o *b3o3*d

⁘ ๐•ฑโ‚†ยฒ o3x3o3o3o *b3o3*d

⁘ ๐•ฑโ‚†ยณ o3o3x3o3o *b3o3*d

๐•ฑโ‚‰ symmetry (2)

⁘ ๐•ฑโ‚‰ยน x3o3o3o3o3o3*a *b3*e

⁘ ๐•ฑโ‚‰ยฒ o3x3o3o3o3o3*a *b3*e